Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

4-Carbamoylpiperidinium acetate monohydrate

Graham Smith* and Urs D. Wermuth

Faculty of Science and Technology, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
Correspondence e-mail: g.smith@qut.edu.au
Received 4 November 2010; accepted 6 November 2010
Key indicators: single-crystal X-ray study; $T=200 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.035 ; w R$ factor $=0.105 ;$ data-to-parameter ratio $=13.8$.

In the structure of the title compound, $\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}^{+}$.$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$, the amide H atoms of the cations form centrosymmetric cyclic hydrogen-bonding associations incorporating two water molecules [graph set $R_{4}^{2}(8)$], which are conjoint with cyclic water-bridged amide-amide associations [$R_{4}^{4}(12)$] and larger $R_{4}^{4}(20)$ associations involving the water molecule and the acetate anions, which bridge through the piperidinium H-bond donors, giving an overall three-dimensional framework structure.

Related literature

For structural data on isonipecotamide salts, see: Smith et al. (2010); Smith \& Wermuth (2010a,b). For graph-set motifs, see: Etter et al. (1990).

Experimental

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{6} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}^{+} \cdot \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-} \cdot \mathrm{H}_{2} \mathrm{O} \\
& M_{r}=200.24 \\
& \text { Triclinic, } P \overline{1} \\
& a=5.8219(2) \AA \\
& b=7.7675(3) \AA \\
& c=12.4022(5) \AA \\
& \alpha=81.088(4)^{\circ} \\
& \beta=78.763(4)^{\circ}
\end{aligned}
$$

$\gamma=76.202(4)^{\circ}$
$V=530.75(4) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=200 \mathrm{~K}$
$0.40 \times 0.35 \times 0.15 \mathrm{~mm}$

Data collection
Oxford Diffraction Gemini-S Ultra CCD-detector diffractometer Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010)
$T_{\text {min }}=0.962, T_{\text {max }}=0.980$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.105$
$S=0.93$
2087 reflections
151 parameters

6385 measured reflections 2087 independent reflections 1602 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.021$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 A-\mathrm{H} 11 A \cdots \mathrm{O} 12^{\mathrm{i}}$	$0.940(17)$	$1.793(17)$	$2.7311(16)$	$175.8(17)$
$\mathrm{N} 1 A-\mathrm{H} 12 A \cdots \mathrm{O} 11^{\text {ii }}$	$0.949(18)$	$1.824(18)$	$2.7666(16)$	$171.8(14)$
$\mathrm{N} 41 A-\mathrm{H} 41 A \cdots \mathrm{O} 1 W$	$0.919(18)$	$1.984(18)$	$2.8939(17)$	$170.2(15)$
$\mathrm{N} 41 A-\mathrm{H} 42 A \cdots \mathrm{O} 1 W^{\text {iii }}$	$0.899(17)$	$2.188(16)$	$2.9491(16)$	$142.1(15)$
$\mathrm{O} 1 W-\mathrm{H} 11 W \cdots \mathrm{O} 11$	$0.92(2)$	$1.87(2)$	$2.7871(15)$	$172(2)$
$\mathrm{O} 1 W-\mathrm{H} 12 W \cdots \mathrm{O} 41 A^{\text {iv }}$	$0.84(2)$	$1.90(2)$	$2.7370(15)$	$177(2)$
Symmetry codes: (i) $x, y+1, z ;$ (ii) $x-1, y+1, z ;$ (iii) $-x+2,-y,-z+1 ;$ (iv)				
$x+1, y, z$.				

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis $P R O$; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

The authors acknowledge financial support from the Australian Research Council, the Faculty of Science and Technology, Queensland University of Technology and the School of Biomolecular and Physical Sciences, Griffith University.

[^0]
References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Etter, M. C., MacDonald, J. C. \& Bernstein, J. (1990). Acta Cryst. B46, 256-262. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Smith, G. \& Wermuth, U. D. (2010a). Acta Cryst. C66. Submitted. [FG3206]
Smith, G. \& Wermuth, U. D. (2010b). Acta Cryst. C66. Accepted. [SU3056]
Smith, G., Wermuth, U. D. \& Young, D. J. (2010). Acta Cryst. E66, o3160o3161.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

```
Acta Cryst. (2010). E66, o3162 [ doi:10.1107/S1600536810045538 ]
```


4-Carbamoylpiperidinium acetate monohydrate

G. Smith and U. D. Wermuth

Comment

The amide 4-carbamoylpiperidine (isonipecotamide, INIPA) has proved to be a particularly useful synthon for the construction of crystalline salts with a range of aromatic carboxylic acids, enabling their structure determination (Smith \& Wermuth, $2010 a, 2010 b$). The structure of the $2: 1$ INIPA salt of biphenyl-4, 4 '-disulfonic acid has also been reported (Smith et al., 2010), and all reported compounds, prepared in aqueous ethanolic solution, have been anhydrous. No structures with aliphatic acids have previously been reported. However, our reaction of isonipecotamide with acetic acid in aqueous methanolic solution gave the title compound, the hydrate $\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}^{+} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-} . \mathrm{H}_{2} \mathrm{O}$, (I) and the structure is reported here.

With (I) (Fig. 1) the amide H atoms of the cations form centrosymetric cyclic hydrogen-bonding associations which incorporate two water molecules [graph set $R^{2}{ }_{4}(8)$ (Etter et al., 1990)], These are conjoint with cyclic water-bridged amide-amide associations $\left[R_{4}{ }^{4}(12)\right]$ and larger $R_{4}{ }^{4}(20)$ associations also involving the water molecule and the acetate anions (Table 1). These acetate groups bridge the cations through the piperidinium H donor atoms, giving an overall three-dimensional framework structure (Fig. 2).

Experimental

The title compound was synthesized by heating together under reflux for 10 minutes, 1 mmol quantities of 4-carbamoylpiperidine (isonipecotamide) and acetic acid in 50 ml of 80% methanol-water. After concentration to ca 30 ml , partial room temperature evaporation of the hot-filtered solution gave colourless plates of (I) (m.p. 409 K) from which a specimen was cleaved for the X-ray analysis.

Refinement

Hydrogen atoms involved in hydrogen-bonding interactions were located by difference methods and their positional and isotropic displacement parameters were refined. The $\mathrm{N}-\mathrm{H}$ bond distance range is 0.899 (17)-0.949 (18) \AA and the water $\mathrm{O}-\mathrm{H}$ distances are 0.82 (2) and 0.92 (2) \AA. Other H -atoms were included in the refinement at calculated positions $[\mathrm{C}-\mathrm{H}=$ 0.96-0.97 \AA and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$, using a riding-model approximation.

Figures

Fig. 1. Molecular configuration and atom naming scheme for the three INIPA cation the acetate anion and the water molecule of solvation in (I). Inter-species hydrogen bonds are shown as dashed lines and displacement ellipsoids are drawn at the 40% probability level.

supplementary materials

Fig. 2. The three-dimensional hydrogen-bonded framework structure of (I) viewed down the approximate b cell direction showing the cyclic $R^{2} 4(8), R_{4}{ }^{4}(12)$ and $R_{4}{ }^{4}(20)$ hydrogen-bonding interactions in (I). Non-associative H atoms are omitted. For symmetry codes, see Table 1.

4-Carbamoylpiperidinium acetate monohydrate

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}^{+} \cdot \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$	$Z=2$
$M_{r}=206.24$	$F(000)=224$
Triclinic, $P \mathrm{~T}$	$D_{\mathrm{x}}=1.291 \mathrm{Mg} \mathrm{m}$
Hall symbol: -P 1	Melting point: 409 K
$a=5.8219(2) \AA$	Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
$b=7.7675(3) \AA$	Cell parameters from 3330 reflections
$c=12.4022(5) \AA$	$\theta=3.4-28.8^{\circ}$
$\alpha=81.088(4)^{\circ}$	$\mu=0.10 \mathrm{~mm}^{-1}$
$\beta=78.763(4)^{\circ}$	$T=200 \mathrm{~K}^{\circ}$
$\gamma=76.202(4)^{\circ}$	Plate, colourless
$V=530.75(4) \AA^{3}$	$0.40 \times 0.35 \times 0.15 \mathrm{~mm}$

Data collection

Oxford Diffraction Gemini-S Ultra CCD-detector diffractometer
Radiation source: Enhance (Mo) X-ray source graphite

Detector resolution: 16.977 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
$T_{\text {min }}=0.962, T_{\text {max }}=0.980$
2087 independent reflections
1602 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.021$
$\theta_{\text {max }}=26.0^{\circ}, \theta_{\text {min }}=3.4^{\circ}$
$h=-7 \rightarrow 7$
$k=-9 \rightarrow 9$
$l=-15 \rightarrow 15$
6385 measured reflections

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.105$
$S=0.93$

2087 reflections
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0733 P)^{2}+0.0214 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$

151 parameters

0 restraints

$$
\begin{aligned}
& \Delta \rho_{\max }=0.20 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.19 \mathrm{e}^{-3}
\end{aligned}
$$

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
O41A	$0.48609(16)$	$0.38864(13)$	$0.35243(9)$	$0.0344(3)$
N1A	$0.9204(2)$	$0.82745(15)$	$0.19803(10)$	$0.0274(4)$
N41A	$0.7954(2)$	$0.21185(16)$	$0.42814(10)$	$0.0297(4)$
C2A	$0.9917(3)$	$0.67001(19)$	$0.13552(11)$	$0.0290(4)$
C3A	$0.8415(2)$	$0.53343(18)$	$0.18703(11)$	$0.0264(4)$
C4A	$0.8642(2)$	$0.47820(17)$	$0.30875(11)$	$0.0223(4)$
C5A	$0.8010(3)$	$0.64377(18)$	$0.37045(11)$	$0.0283(4)$
C6A	$0.9525(3)$	$0.77742(19)$	$0.31557(12)$	$0.0319(5)$
C41A	$0.6994(2)$	$0.35378(17)$	$0.36412(11)$	$0.0236(4)$
O11	$1.43436(17)$	$-0.04485(13)$	$0.19784(8)$	$0.0320(3)$
O12	$1.14721(18)$	$0.09626(14)$	$0.10165(9)$	$0.0395(4)$
C1	$1.3462(2)$	$0.08082(17)$	$0.12972(11)$	$0.0246(4)$
C2	$1.4884(3)$	$0.2219(2)$	$0.08190(13)$	$0.0375(5)$
O1W	$1.31002(18)$	$0.08400(15)$	$0.40367(9)$	$0.0314(3)$
H4A	1.03030	0.41690	0.31380	0.0270^{*}
H11A	$1.005(3)$	$0.917(2)$	$0.1664(15)$	$0.050(5)^{*}$
H12A	$0.757(3)$	$0.882(2)$	$0.1956(14)$	$0.043(5)^{*}$
H21A	1.16000	0.61660	0.13610	0.0350^{*}
H22A	0.96950	0.70700	0.05920	0.0350^{*}
H31A	0.89420	0.42910	0.14720	0.0320^{*}
H32A	0.67480	0.58390	0.18070	0.0320^{*}
H41A	$0.958(3)$	$0.178(2)$	$0.4274(13)$	$0.036(4)^{*}$
H42A	$0.701(3)$	$0.138(2)$	$0.4646(14)$	$0.045(5)^{*}$
H51A	0.63270	0.69920	0.37160	0.0340^{*}
H52A	0.82710	0.60850	0.44640	0.0340^{*}
H61A	0.90520	0.88300	0.35420	0.0380^{*}
H62A	1.12010	0.72560	0.31940	0.0380^{*}
H21	1.42940	0.28690	0.01690	0.0450^{*}
H22	1.65450	0.16610	0.06270	0.0450^{*}
H23	1.47180	0.30250	0.13570	0.0450^{*}
H11W	$1.355(4)$	$0.031(3)$	$0.3388(19)$	$0.069(7)^{*}$

H12W

1.368 (4)
0.175 (3)
0.3891 (17) $0.062(6)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O41A	$0.0236(5)$	$0.0304(6)$	$0.0475(6)$	$-0.0104(4)$	$-0.0061(4)$	$0.0086(5)$
N1A	$0.0228(6)$	$0.0200(6)$	$0.0383(7)$	$-0.0088(5)$	$-0.0057(5)$	$0.0076(5)$
N41A	$0.0279(7)$	$0.0236(6)$	$0.0349(7)$	$-0.0100(5)$	$-0.0026(5)$	$0.0083(5)$
C2A	$0.0309(7)$	$0.0300(8)$	$0.0250(7)$	$-0.0108(6)$	$-0.0021(6)$	$0.0039(6)$
C3A	$0.0310(7)$	$0.0259(7)$	$0.0235(7)$	$-0.0116(6)$	$-0.0025(5)$	$-0.0007(6)$
C4A	$0.0192(6)$	$0.0198(6)$	$0.0269(7)$	$-0.0060(5)$	$-0.0038(5)$	$0.0029(5)$
C5A	$0.0345(8)$	$0.0271(7)$	$0.0247(7)$	$-0.0124(6)$	$-0.0020(6)$	$-0.0016(6)$
C6A	$0.0391(8)$	$0.0270(8)$	$0.0336(8)$	$-0.0155(6)$	$-0.0057(6)$	$-0.0032(6)$
C41A	$0.0239(7)$	$0.0202(7)$	$0.0256(7)$	$-0.0065(5)$	$-0.0007(5)$	$-0.0008(6)$
O11	$0.0274(5)$	$0.0289(5)$	$0.0362(6)$	$-0.0050(4)$	$-0.0060(4)$	$0.0061(5)$
O12	$0.0333(6)$	$0.0339(6)$	$0.0535(7)$	$-0.0167(5)$	$-0.0175(5)$	$0.0165(5)$
C1	$0.0250(7)$	$0.0227(7)$	$0.0257(7)$	$-0.0074(5)$	$-0.0012(5)$	$-0.0015(6)$
C2	$0.0368(8)$	$0.0335(8)$	$0.0450(9)$	$-0.0182(7)$	$-0.0080(7)$	$0.0054(7)$
O1W	$0.0325(6)$	$0.0304(6)$	$0.0324(6)$	$-0.0149(5)$	$-0.0066(4)$	$0.0073(5)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

O41A-C41A	$1.2386(16)$
O11-C1	$1.2667(16)$
O12-C1	$1.2473(17)$
O1W-H12W	$0.84(2)$
O1W-H11W	$0.92(2)$
N1A-C6A	$1.4856(19)$
N1A-C2A	$1.4816(18)$
N41A-C41A	$1.3289(18)$
N1A-H12A	$0.949(18)$
N1A-H11A	$0.940(17)$
N41A-H41A	$0.919(18)$
N41A-H42A	$0.899(17)$
C2A-C3A	$1.521(2)$
C3A-C4A	$1.5266(19)$
C4A-C5A	$1.5311(19)$
H11W-O1W-H12W	$104(2)$
C2A-N1A-C6A	$111.60(11)$
H11A-N1A-H12A	$104.9(14)$
C6A-N1A-H11A	$109.2(11)$
C2A-N1A-H11A	$112.5(10)$
C2A-N1A-H12A	$109.7(10)$
C6A-N1A-H12A	$108.8(10)$
C41A-N41A-H42A	$118.4(11)$
C41A-N41A-H41A	$121.8(10)$
H41A-N41A-H42A	$119.1(15)$
N1A-C2A-C3A	$110.23(12)$

C4A-C41A	$1.5186(18)$
C5A-C6A	$1.518(2)$
C2A-H21A	0.9700
C2A-H22A	0.9700
C3A-H32A	0.9700
C3A-H31A	0.9700
C4A-H4A	0.9800
C5A-H51A	0.9700
C5A-H52A	0.9700
C6A-H62A	0.9700
C6A-H61A	0.9700
C1-C2	$1.509(2)$
C2-H23	0.9600
C2-H21	0.9600
C2-H22	0.9600
C2A-C3A-H32A	109.00
C4A-C3A-H32A	109.00
H31A-C3A-H32A	108.00
C4A-C3A-H31A	109.00
C5A-C4A-H4A	109.00
C41A-C4A-H4A	109.00
C3A-C4A-H4A	109.00
C4A-C5A-H51A	109.00
C6A-C5A-H51A	109.00
C6A-C5A-H52A	109.00
C4A-C5A-H52A	109.00

sup-4

supplementary materials

C2A-C3A-C4A	$110.91(11)$
C3A-C4A-C41A	$111.67(10)$
C5A-C4A-C41A	$108.66(11)$
C3A-C4A-C5A	$109.87(11)$
C4A-C5A-C6A	$111.11(12)$
N1A-C6A-C5A	$109.84(13)$
O41A-C41A-C4A	$120.90(12)$
O41A-C41A-N41A	$122.94(12)$
N41A-C41A-C4A	$116.11(11)$
N1A-C2A-H21A	110.00
C3A-C2A-H21A	110.00
C3A-C2A-H22A	110.00
H21A-C2A-H22A	108.00
N1A-C2A-H22A	110.00
C2A-C3A-H31A	109.00
C6A-N1A-C2A-C3A	$59.57(16)$
C2A-N1A-C6A-C5A	$-59.60(16)$
N1A-C2A-C3A-C4A	$-56.87(15)$
C2A-C3A-C4A-C5A	$54.57(15)$
C2A-C3A-C4A-C41A	$175.21(11)$
C3A-C4A-C5A-C6A	$-54.94(16)$

H51A-C5A-H52A	108.00
N1A-C6A-H62A	110.00
C5A-C6A-H61A	110.00
C5A-C6A-H62A	110.00
H61A-C6A-H62A	108.00
N1A-C6A-H61A	110.00
O11-C1-O12	$123.79(12)$
O11-C1-C2	$117.89(12)$
O12-C1-C2	$118.31(12)$
C1-C2-H22	109.00
C1-C2-H23	109.00
C1-C2-H21	109.00
H21-C2-H23	109.00
H22-C2-H23	109.00
H21-C2-H22	109.00
C41A-C4A-C5A-C6A	$-177.38(12)$
C3A-C4A-C41A-O41A	$-47.52(17)$
C3A-C4A-C41A-N41A	$135.05(12)$
C5A-C4A-C41A-O41A	$73.82(16)$
C5A-C4A-C41A-N41A	$-103.61(14)$
C4A-C5A-C6A-N1A	$57.10(16)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	D - H	$\mathrm{H} \cdots \mathrm{A}$	$D \cdots A$	$D-\mathrm{H} \cdots \mathrm{A}$
N1A-H11A \cdots O12 ${ }^{\text {i }}$	0.940 (17)	1.793 (17)	2.7311 (16)	175.8 (17)
N1A-H12A \cdots O11 ${ }^{\text {ii }}$	0.949 (18)	1.824 (18)	2.7666 (16)	171.8 (14)
N41A - H41A \cdots O1W	0.919 (18)	1.984 (18)	2.8939 (17)	170.2 (15)
N41A-H42A \cdots O1W ${ }^{\text {iii }}$	0.899 (17)	2.188 (16)	2.9491 (16)	142.1 (15)
O1W-H11W \cdots O11	0.92 (2)	1.87 (2)	2.7871 (15)	172 (2)
O1W-H12W \cdots O41A ${ }^{\text {iv }}$	0.84 (2)	1.90 (2)	2.7370 (15)	177 (2)
C2A-H22A $\cdots{ }^{\text {O }}{ }^{\text {V }}$	0.97	2.42	3.3428 (18)	158

Symmetry codes: (i) $x, y+1, z$; (ii) $x-1, y+1, z$; (iii) $-x+2,-y,-z+1$; (iv) $x+1, y, z$; (v) $-x+2,-y+1,-z$.

supplementary materials

Fig. 1

Fig. 2

[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2071).

